Uncertainty Analysis of the GeoPEARL Pesticide Leaching Model

Gerard Heuvelink, Erik van den Berg, Saskia Burgers
Wageningen University and Research Centre

and Aaldrik Tiktak
Netherlands Environmental Assessment Agency
The GeoPEARL model

- 1D-model describing the fate of pesticides in the soil-plant system
- Calculates drainage of pesticides into surface water and leaching to groundwater
- Applied at grid nodes to create spatial images
- Used to verify the Dutch Pesticide Authorisation procedure
GeoPEARL has many inputs, mainly soil, landuse, climate and hydrology.
Why uncertainty analysis of GeoPEARL?

- Authorities must know how accurate the results of the model are if these results are to be used in legislation and policy making
- Information about uncertainty can be used to take better decisions (i.e., risk analysis)
- It provides insight into how best to improve results or save costs without deteriorating the results
This study

- Considered only the propagation of uncertainty in soil and pesticide properties (for three characteristic pesticides, named A, B and D)
- Used a Monte Carlo simulation approach
- Also quantified the contribution of individual error sources to the output
- Model output is defined as the 90 percentile of the spatial distribution of the temporal median of the leaching concentration at 1m depth
Uncertain soil properties

For each horizon:

- Thickness – truncated normal, parameters derived from Soil Information System (SIS)
- Texture – triplet {clay-silt-sand}, truncated normal, parameters from SIS, cross-correlated
- Organic matter content – truncated lognormal, parameters from SIS
- Hydraulic conductivity – random sampling from Staring series per soil type
- Water retention characteristic – random sampling from Staring series per soil type
Uncertain pesticide properties

- Half-life of transformation in soil – lognormal, parameters from literature
- Coefficient of sorption on organic matter – lognormal, parameters from literature
Summary of Monte Carlo method

- Repeat many times (in our case 1000 times):
 - Simulate a possible reality from the probability distribution of the uncertain inputs
 - Run model with simulated input and store result
- Compute and report statistics of the stored results (e.g. mean, standard deviation, proportion that exceeds critical threshold)
Systematic spatial sample of 258 grid points

- Sampling error was considered negligible (but this was not checked!)
- At each point 1000 Monte Carlo runs of GeoPEARL
- Next 90 percentile (P90) of 258 GeoPEARL outputs computed for each of the 1000 runs
- Variability in the 1000 P90 values conveys uncertainty about true P90
Results: uncertainty in GeoPEARL output

- Large uncertainty in P90, particularly for substance A
- Box-plots all above regulatory limit of 0.1 μg·L$^{-1}$
- Reject all three pesticides with certainty
1000 Monte Carlo runs was sufficient.

\[
\text{var}(m_{P90}) = \frac{\sigma_{P90}^2}{N}
\]

\[
\text{var}(S_{P90}^2) = \frac{1}{N} \left(\frac{\tau_{P90}^4 - \sigma_{P90}^4 \cdot \frac{N - 3}{N - 1}}{N} \right)
\]

Table 2
Estimated mean and variance of P90 and associated sampling error standard deviations.

<table>
<thead>
<tr>
<th>Pesticide</th>
<th>Mean of P90 (µg/L) Mean</th>
<th>SD</th>
<th>Variance of P90 (µg/L)^2 Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>7.168</td>
<td>0.033</td>
<td>1.063</td>
<td>0.045</td>
</tr>
<tr>
<td>B</td>
<td>4.202</td>
<td>0.016</td>
<td>0.258</td>
<td>0.012</td>
</tr>
<tr>
<td>D</td>
<td>0.3922</td>
<td>0.0034</td>
<td>0.0119</td>
<td>0.0007</td>
</tr>
</tbody>
</table>
Including uncertainty causes a systematic shift in P90
What is the main source of error?

Percentage variance explained by uncertain inputs

<table>
<thead>
<tr>
<th>Substance</th>
<th>Organic matter</th>
<th>Other soil properties</th>
<th>Half-life</th>
<th>Sorption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substance D</td>
<td>0</td>
<td>0</td>
<td>60</td>
<td>20</td>
</tr>
<tr>
<td>Substance A</td>
<td>7</td>
<td>1</td>
<td>54</td>
<td>41</td>
</tr>
<tr>
<td>Substance B</td>
<td>7</td>
<td>0</td>
<td>87</td>
<td>10</td>
</tr>
</tbody>
</table>
Conclusions

- Uncertainty in 90 percentile of the spatial distribution of pesticide leaching concentration is very large.
- However, when the regulatory limit of 0.1 µg·L⁻¹ is used, then uncertainty does not impair decision-making.
- Pesticide properties (notable the half-life) are a much greater source of uncertainty than soil properties.
- Accuracy improvement of GeoPEARL output must be achieved by reducing the uncertainty about pesticide properties.
- Reducing uncertainty about pesticide properties is difficult because this requires extensive experiments and modelling of the interaction between soil and pesticides.
Thank you